Skip to contents
library(NHSRwaitinglist)
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)

# set a seed so that these plots are always the same
set.seed(2)

This vignette is a set of worked examples using a sample dataset similar to that which you may be working with. It also demonstrates how to use the wl_* family of functions, such as wl_simulator, wl_queue_size, wl_referral_stats, wl_removal_stats, and wl_stats.

Anatomy of a waiting list

In its purest form, a waiting list consists of the dates that individuals arrived in a queue, and the dates that they left having been seen by the service (doctor, nurse, or diagnostic test, and so on). These dates are the waiting list additions (or arrivals, referrals), and waiting list removals (or treatments, discharges). They correspond to demand (for arrivals), and capacity (for removals).

This vignette is going to simulate 3 different waiting lists:

  1. A list where demand is higher than capacity
  2. A list where demand and capacity are similar
  3. A list where there is sufficient capacity for the demand

1. A growing waiting list

Back to top…

So first we need a waiting list, and we can make a synthetic one using the wl_simulator() function. We decide how long our simulation should run for, and what our weekly demand and capacity is. In the example below the capacity is less than the demand, so over time we should expect a queue to form.

waiting_list <- wl_simulator(
  start_date = "2020-01-01",
  end_date = "2024-03-31",
  demand = 10, # simulating 10 patient arrivals per week
  capacity = 9 # simulating 9 patients being treated per week
)

head(waiting_list, 10)
#>      Referral    Removal
#> 1  2020-01-02 2020-01-03
#> 2  2020-01-03 2020-01-04
#> 3  2020-01-04 2020-01-05
#> 4  2020-01-04 2020-01-05
#> 5  2020-01-06 2020-01-07
#> 6  2020-01-08 2020-01-09
#> 7  2020-01-08 2020-01-10
#> 8  2020-01-08 2020-01-11
#> 9  2020-01-09 2020-01-12
#> 10 2020-01-09 2020-01-12

Now that we have a waiting list, we should visualise it. We can use the wl_queue_size() function to tell us the size of the queue at the end of each day. We can use {ggplot} to make a plot of the queue size over time, and as expected, it gets larger and larger because our demand is bigger than our capacity.

# calculate the queue size
queue_size <- wl_queue_size(waiting_list)

head(queue_size)
#>        dates queue_size
#> 1 2020-01-02          1
#> 2 2020-01-03          1
#> 3 2020-01-04          2
#> 4 2020-01-05          0
#> 5 2020-01-06          1
#> 6 2020-01-07          0

tail(queue_size)
#>           dates queue_size
#> 1546 2024-03-26        182
#> 1547 2024-03-27        181
#> 1548 2024-03-28        183
#> 1549 2024-03-29        185
#> 1550 2024-03-30        184
#> 1551 2024-03-31        185

# visualise the queue with a plot
ggplot(queue_size, aes(dates, queue_size)) +
  geom_line() +
  labs(
    title = "A growing waiting list"
  )

Referral statistics

Next, we might be interested in some statistics about the referrals, or arrivals, to the queue. We can use the wl_referral_stats() function to calculate these.

referral_stats <- wl_referral_stats(waiting_list)

head(referral_stats)
#>   demand.weekly demand.daily demand.cov demand.count
#> 1      9.818065     1.402581   1.131775         2174

Now we can see that 2174 patients joined our simulated waiting list, at an average rate of 9.82 per week, or 1.4 per day. Very close to the 10 patients a week we requested when we made our simulated waiting list using wl_simulator(). The final statistic of interest is the coefficient of variation, which is 1.13.

Removal statistics

Similarly, we might be interested in some statistics about the removals from the queue. We can use the wl_removal_stats() function to calculate these.

removal_stats <- wl_removal_stats(waiting_list)

head(removal_stats)
#>   capacity.weekly capacity.daily capacity.cov removal.count
#> 1               9       1.285714    0.5362099          1990

Now we can see that 1990 patients were treated and removed from our simulated waiting list, at an average rate of 9 per week, or 1.29 per day. Very close to the 9 patients a week we set up using wl_simulator(). The final statistic of interest is the coefficient of variation (for removals), which is 0.54.

Overall stats

Finally, we can calculate a combined set of statistics to summarise the waiting list. To do this we need to provide the target waiting time. This might be 2 weeks for a cancer referral, or commonly 18 weeks for a standard non-cancer referral.

overall_stats <- wl_stats(
  waiting_list = waiting_list,
  target_wait = 18 # standard NHS 18 weeks target
)

head(overall_stats)
#>   mean.demand mean.capacity     load load.too.big count.demand queue_size
#> 1    9.818065             9 1.090896         TRUE         2174        185
#>   target_queue_size queue.too.big mean_wait cv_arrival cv_removal
#> 1          44.18129          TRUE  64.63784   1.131775  0.5362099
#>   target.capacity relief.capacity pressure
#> 1              NA        15.23417 7.181982

This gives us a lot of useful information. Taking it step by step:

The first 4 columns tell us whether the load is larger than 1. If it is, we can expect the queue to continue growing indefinitely.

mean.demand mean.capacity load load.too.big
9.818065 9 1.090896 TRUE

The next columns tell us about the resulting queue size at the end of our simulation, the target size we need to plan for in order to achieve the 18 week waiting target, and a judgement about whether the queue is too large. If the queue is too large, we need to implement some relief capacity to bring it within range before attempting to maintain the queue.

queue_size target_queue_size queue.too.big mean_wait
185 44.18129 TRUE 64.63784

There is a column to report the actual average patient waiting time, which is 64.64 weeks, compared to our target of 18 weeks.

mean_wait
64.63784

These two columns re-state the coefficients of variance for use in reporting.

cv_arrival cv_removal
1.131775 0.5362099

The next two columns tell us about the required capacity. Only one will contain data.

  1. If the queue is not too large, "target.capacity" will report the capacity required to maintain the queue at it’s target waiting time performance.
  2. If the queue is too large, "relief.capacity" will report the capacity required to bring the queue to a maintainable size within 26 weeks (6 months).
target.capacity relief.capacity
NA 15.23417

The final column reports the waiting list "pressure". This will be useful later when comparing waiting lists of differing sizes, with differing targets. It allows waiting list pressures to be compared because the waiting list with the largest number of patients waiting is not always the list with the largest problem meeting its target.

pressure
7.181982

2. A finely balanced waiting list

Back to top…

The waiting list in this section is very finely balanced. The demand remains the same as the last example, but now capacity has been increased to be slightly larger than demand. It is not significantly larger (there is approximately 2% "spare").

waiting_list <- wl_simulator(
  start_date = "2020-01-01",
  end_date = "2024-03-31",
  demand = 10, # simulating 10 patient arrivals per week
  capacity = 10.2 # simulating 10.2 patients being treated per week
)

referral_stats <- wl_referral_stats(waiting_list)
head(referral_stats)
#>   demand.weekly demand.daily demand.cov demand.count
#> 1      10.10458     1.443512   1.153809         2236

removal_stats <- wl_removal_stats(waiting_list)
head(removal_stats)
#>   capacity.weekly capacity.daily capacity.cov removal.count
#> 1        10.13399       1.447712     0.690155          2216

# calculate the queue size
queue_size <- wl_queue_size(waiting_list)

This time we processed 2216 patients.

The increase in capacity not only allowed processing more patients, it also changed the shape of the queue. Visualising the queue we can see that this time it did not grow uncontrollably, reaching a maximum size of 35 patients waiting over the same time period as the first simulation. It also returned to zero length several times during the simulated period.

# visualise the queue with a plot
ggplot(queue_size, aes(dates, queue_size)) +
  geom_line() +
  labs(
    title = "A finely-balanced waiting list"
  )

This time we will go straight to calculating the overall statistics.

overall_stats <- wl_stats(
  waiting_list = waiting_list,
  target_wait = 18 # standard NHS 18wk target
)

head(overall_stats)
#>   mean.demand mean.capacity      load load.too.big count.demand queue_size
#> 1    10.10458      10.13399 0.9970985        FALSE         2236         22
#>   target_queue_size queue.too.big mean_wait cv_arrival cv_removal
#> 1          45.47063         FALSE  6.863636   1.153809   0.690155
#>   target.capacity relief.capacity  pressure
#> 1        10.30543              NA 0.7626263

In this finely balanced example, the mean demand and mean capacity give a load very close to 1, at 0.9971. While this is less than one, it is perhaps a little too close for comfort.

We can see that the finishing queue size is 22, but as discussed above, the waiting list fluctuated in size, and even returned to zero a couple of times during the simulated period. It has not grown uncontrollably as in the first example.

The mean wait is 6.86, which is less than the target of 18 weeks, but is more than a quarter of the target. The exponential shape of waiting list distributions means that in this system we would expect more than a reasonable number of patients to be experiencing waiting times of over 18 weeks.

This time, we do not need relief capacity because the queue is not too big. Instead, the package recommends a "target capacity", which we need to provide if we want to meet the 18 week standard for the right proportion of patients. In this case it is 10.305, which is only very marginally larger than the mean capacity we have available (10.134).

3. A waiting list with sufficient capacity

Back to top…

The final example is for a waiting list with sufficient capacity to meet demand. We’ll use the recommended figure from the example above, assuming we have made some improvements and increased available capacity from 10.2 to 10.3 patients per week.

waiting_list <- wl_simulator(
  start_date = "2020-01-01",
  end_date = "2024-03-31",
  demand = 10, # simulating 10 patient arrivals per week
  capacity = 10.3 # simulating 10.3 patients being treated per week
)

referral_stats <- wl_referral_stats(waiting_list)
head(referral_stats)
#>   demand.weekly demand.daily demand.cov demand.count
#> 1      9.698904     1.385558   1.173034         2149

removal_stats <- wl_removal_stats(waiting_list)
head(removal_stats)
#>   capacity.weekly capacity.daily capacity.cov removal.count
#> 1        10.13793       1.448276    0.7245002          2143

# calculate the queue size
queue_size <- wl_queue_size(waiting_list)

This time we processed 2143 patients.
Visualising the queue, again it looks different to the previous examples. While the maximum number of patients in the queue is similar to the last example, this time the queue size has frequently dropped to zero. This is a stable queue, which is able to empty more regularly.

NOTE When the queue is empty, the process serving it will also be idle. Conventional wisdom has it that at this point the process must have excess capacity, which can safely be removed. This is not the case. Returning to “Fact 2” of Professor Neil Walton’s white paper,

If you want to have low waiting times, then there must be a non-negligible fraction of time where services are not being used.

# visualise the queue with a plot
ggplot(queue_size, aes(dates, queue_size)) +
  geom_line() +
  labs(
    title = "A stable waiting list"
  )

Again calculating the overall statistics.

overall_stats <- wl_stats(
  waiting_list = waiting_list,
  target_wait = 18 # standard NHS 18 weeks target
)

head(overall_stats)
#>   mean.demand mean.capacity      load load.too.big count.demand queue_size
#> 1    9.698904      10.13793 0.9566946        FALSE         2149          7
#>   target_queue_size queue.too.big mean_wait cv_arrival cv_removal
#> 1          43.64507         FALSE 0.8571429   1.173034  0.7245002
#>   target.capacity relief.capacity  pressure
#> 1        9.910116              NA 0.0952381

This time the simulation has created a mean demand and capacity which is slightly lower than we asked for, but the gap between them is similar to what we wanted.

The load comes out at 0.957, which is more comfortably below one. A still lower load would give more headroom, and may even become necessary if the variability of demand or capacity were to increase.

The mean wait is 0.86, less than a week, which is very comfortably less than the target of 18 weeks. In this system we expect the 18 weeks target to be met for the vast majority of patients.

Again, the package is recommending a "target capacity", this time of 9.91, which is a similar margin above the mean demand for this simulation (9.699).

Conclusion

Back to top…

This vignette has detailed some of the wl_* functions you can use to explore your waiting list performance. We also saw how altering service capacity without changing demand can have a dramatic effect on the behaviour of a waiting list.


END